--- title: LlamaIndex subtitle: Build AI applications faster with LlamaIndex and Postgres enableTableOfContents: true updatedOn: '2025-06-04T16:43:36.529Z' --- LlamaIndex is a popular framework for working with AI, Vectors, and embeddings. LlamaIndex supports using Neon as a vector store, using the `pgvector` extension. ## Initialize Postgres Vector Store LlamaIndex simplifies the complexity of managing document insertion and embeddings generation using vector stores by providing streamlined methods for these tasks. Here's how you can initialize Postgres Vector with LlamaIndex: ```tsx // File: vectorStore.ts import { OpenAIEmbedding, Settings } from 'llamaindex'; import { PGVectorStore } from 'llamaindex/storage/vectorStore/PGVectorStore'; Settings.embedModel = new OpenAIEmbedding({ dimensions: 512, model: 'text-embedding-3-small', }); const vectorStore = new PGVectorStore({ dimensions: 512, connectionString: process.env.POSTGRES_URL, }); export default vectorStore; // Use in your code (say, in API routes) const index = await VectorStoreIndex.fromVectorStore(vectorStore); ``` ## Generate Embeddings with OpenAI LlamaIndex handles embedding generation internally while adding vectors to the Postgres database, simplifying the process for users. For more detailed control over embeddings, refer to the respective [JavaScript](https://ts.llamaindex.ai/docs/llamaindex/modules/models/embeddings/openai) and [Python](https://docs.llamaindex.ai/en/stable/examples/embeddings/OpenAI) documentation. ## Stream Chat Completions with OpenAI LlamaIndex can find similar documents to the user's latest query and invoke the OpenAI API to power [chat completion](https://platform.openai.com/docs/guides/text-generation/chat-completions-api) responses, providing a seamless integration for creating dynamic interactions. Here's how you can power chat completions in an API route: ```tsx import vectorStore from './vectorStore'; import { ContextChatEngine, VectorStoreIndex } from 'llamaindex'; interface Message { role: 'user' | 'assistant' | 'system' | 'memory'; content: string; } export async function POST(request: Request) { const encoder = new TextEncoder(); const { messages = [] } = (await request.json()) as { messages: Message[] }; const userMessages = messages.filter((i) => i.role === 'user'); const query = userMessages[userMessages.length - 1].content; const index = await VectorStoreIndex.fromVectorStore(vectorStore); const retriever = index.asRetriever(); const chatEngine = new ContextChatEngine({ retriever }); const customReadable = new ReadableStream({ async start(controller) { const stream = await chatEngine.chat({ message: query, chatHistory: messages, stream: true }); for await (const chunk of stream) { controller.enqueue(encoder.encode(chunk.response)); } controller.close(); }, }); return new Response(customReadable, { headers: { Connection: 'keep-alive', 'Content-Encoding': 'none', 'Cache-Control': 'no-cache, no-transform', 'Content-Type': 'text/plain; charset=utf-8', }, }); } ``` ## Starter apps Hackable, fully-featured, pre-built [starter apps](https://github.com/neondatabase/examples/tree/main/ai/llamaindex) to get you up and running with LlamaIndex and Postgres. AI chatbot (OpenAI + LllamIndex) RAG chatbot (OpenAI + LlamaIndex) Semantic search chatbot (OpenAI + LlamaIndex) Reverse image search (OpenAI + LlamaIndex) Chat with PDF (OpenAI + LlamaIndex)